박민혀기
Vision_Kart 2.2v 본문
Vision_Kart 2.2v
Vision_Kart 2.2v은 2.1v에서 키보드로 매개변수 값을 변경할 수 있다.
나머지는 환경은 동일하다.
Environment of Vision_Kart
Processor : RaspberryPi 4
OS : Raspbian
Lidar : YDLidar G2
Lidar Frequency : 10Hz ~ 12Hz(recommend 7Hz)
New function
- Keyboard command
Goals
키보드 명령으로 Circle size, Sight angle 값 조정!
입력 순서도
Enter -> 1 ~ 2(추후에 하나씩 늘릴 예정) -> 값(입력 범위 출력) -> Enter
Algorithm
인터페이스 과정은 그냥 하드코딩으로 구현했다.
더 중요한건 각도와 circle 사이즈마다 종료 임계값(Deadline)이 달라지는 것이다.
새로운 변수(circle_proportion)를 만들어서 프로그램을 종료하게 만들었다.
if(circle_proportion > targetSize && abs(targetAngle) > 180 - View_Angle)
cout << "out!!!!" << endl;
중간에 보면 circle_proportion을 raius에 맞게 바꿔주는 것을 확인할 수 있다.
뭔가 최적화를 하고 싶었지만 시간 관계상 이제 최선..
아래 표는 내가 측정한 비례 최소 값이다. 저걸 참고해서 변수에 할당하였다.
circle size : circle_proportion
1 : 9
2 : 25
3 : 49
4 : 81
5 : 140
새로운 함수 inputKey()
void inputKey(Mat& dotMat, int& radius, int& circle_proportion, int& View_Angle, float& cos_theta,
float& cos_theta_rad, float& hypotenuse, int& height, int Viewer_Y){
Mat backupMat = dotMat.clone();
putText(dotMat, "1. Circle size", Point(10, 900), FONT_HERSHEY_SIMPLEX, 0.8, Scalar(200, 200, 200), true);
putText(dotMat, "2. View angle", Point(10, 930), FONT_HERSHEY_SIMPLEX, 0.8, Scalar(200, 200, 200), true);
imshow("dotMat", dotMat);
int key = waitKey(0);
if(key == 49){
putText(backupMat, "Circle size(1 ~ 5, Typical size 3)", Point(10, 900),
FONT_HERSHEY_SIMPLEX, 0.8, Scalar(200, 200, 200), true);
imshow("dotMat", backupMat);
radius = waitKey(0) - 48;
if(radius == 1) circle_proportion = 14;
else if(radius == 2) circle_proportion = 40;
else if(radius == 3) circle_proportion = 70;
else if(radius == 4) circle_proportion = 100;
else circle_proportion = 200;
}
else if(key == 50){
putText(backupMat, "View angle(10' ~ 80', Typical angle 45')", Point(10, 900),
FONT_HERSHEY_SIMPLEX, 0.8, Scalar(200, 200, 200), true);
imshow("dotMat", backupMat);
string putKey = to_string(waitKey(0) - 48);
putText(backupMat, putKey, Point(10, 930),
FONT_HERSHEY_SIMPLEX, 0.8, Scalar(200, 200, 200), true);
imshow("dotMat", backupMat);
string putKey2 = to_string(waitKey(0) - 48);
putText(backupMat, putKey2, Point(25, 930),
FONT_HERSHEY_SIMPLEX, 0.8, Scalar(200, 200, 200), true);
imshow("dotMat", backupMat);
waitKey(500);
View_Angle = 180 - stoi(putKey + putKey2);
cos_theta = View_Angle - 90.0;
cos_theta_rad = cos_theta * M_PI / 180.0;
hypotenuse = (Viewer_Y / 2) / cos(cos_theta_rad);
height = hypotenuse * sin(cos_theta_rad);
}
}
새로운 함수 inputKey()
Source Code
// The new version Vision_Kart!! //
// Vision_Kart 2.0v //
// 2024_03_25 ~ 27 //
// Vision_Kart 2.1v //
// 2024_03_28 ~ 28 //
// Vision_Kart 2.2v //
// 2024_03_29 ~ 30 //
/******************************///
#include <iostream>
#include <string>
#include "CYdLidar.h"
#include <core/base/timer.h>
#include <core/common/ydlidar_help.h>
#include <cmath>
#include <cstdlib>
#include <opencv2/opencv.hpp>
using namespace std;
using namespace ydlidar;
using namespace cv;
CYdLidar laser;
int c = 0;
uint32_t t = getms();
int ydlidarSet();
void draw_sight_center(Mat& drawMat, Point sight_center);
void draw_line(Mat& dotMat, Point sight_center, int Viewer_X, int Viewer_Y, int height);
void dotting(Mat& dotMat, int x, int y, int proportion_dis, int circle_radius);
vector<Rect> find_object(Mat& dotMat);
int setTarget(const vector<Rect>& boundingBoxs, Point sight_center);
int trkTarget(const vector<Rect>& boundingBoxs, Point ptTarget);
float find_distance(Point target_point, Point sight_center);
float find_angle(Point target_point, Point sight_center);
Point find_target_center(Rect target);
void putAngleSizeDistance(Mat& dotMat, float targetAngle, int targetSize, float targetDistance, Rect putPt);
void inputKey(Mat& dotMat, int& radius, int& circle_proportion, int& View_Angle, float& cos_theta,
float& cos_theta_rad, float& hypotenuse, int& height, int Viewer_y);
int main(){
if(!ydlidarSet()){
cout << "ydLidar Setting Error!!" << endl;
return -1;
}
//OpenCV Property
/*********************/
Point ptTarget;
bool tracking_Flag = false;
int circle_radius = 3;
int circle_proportion = 55;
int Viewer_X = 1000, Viewer_Y = 700;
int View_Angle = 135;
float cos_theta = View_Angle - 90.0;
float cos_theta_rad = cos_theta * M_PI / 180.0;
Point sight_center = Point(Viewer_Y / 2, Viewer_X);
float hypotenuse = (Viewer_Y / 2) / cos(cos_theta_rad);
int height = hypotenuse * sin(cos_theta_rad);
namedWindow("dotMat");
moveWindow("dotMat", 30, 30);
LaserScan scan;
while(os_isOk()){
if(laser.doProcessSimple(scan)){
Mat dotMat = Mat::zeros(Viewer_Y, Viewer_X, CV_8UC3);
Point center = Point(dotMat.cols, dotMat.rows / 2);
for(size_t i = 0; i < scan.points.size(); i++){
const LaserPoint &p = scan.points.at(i);
float Angle = p.angle * 180.0 / M_PI;
if(Angle >= View_Angle || View_Angle * -1 >= Angle){
float radian_Angle = p.angle;
int dis = p.range * 100;
int x = center.x + static_cast<int>(dis * cos(radian_Angle));
int y = center.y + static_cast<int>(dis * sin(radian_Angle));
int proportion_dis = Viewer_X - x;
dotting(dotMat, x, y, proportion_dis, circle_radius);
}
}
transpose(dotMat, dotMat);
flip(dotMat, dotMat, 1);
vector<Rect> boundingRects = find_object(dotMat);
if(tracking_Flag && boundingRects.size() > 0){
int targetIdx = trkTarget(boundingRects, ptTarget);
rectangle(dotMat, boundingRects[targetIdx], Scalar(255, 255, 255), 2);
float targetDistance = find_distance(find_target_center(boundingRects[targetIdx]), ptTarget);
float targetAngle = find_angle(ptTarget, sight_center);
int targetSize = boundingRects[targetIdx].width * boundingRects[targetIdx].height;
putAngleSizeDistance(dotMat, targetAngle, targetSize, targetDistance, boundingRects[targetIdx]);
if(circle_proportion > targetSize && abs(targetAngle) > 180 - View_Angle)
cout << "out!!!!" << endl;
ptTarget = find_target_center(boundingRects[targetIdx]);
}
int key = waitKey(1);
if(key == 27) break;
else if(key == 32){
int idxTarget = setTarget(boundingRects, sight_center);
ptTarget = find_target_center(boundingRects[idxTarget]);
tracking_Flag = !tracking_Flag;
}
else if(key == 13){
inputKey(dotMat, circle_radius, circle_proportion, View_Angle,
cos_theta, cos_theta_rad, hypotenuse, height, Viewer_Y);
continue;
}
draw_line(dotMat, sight_center, Viewer_X, Viewer_Y, height);
draw_sight_center(dotMat, sight_center);
imshow("dotMat", dotMat);
}
else
cerr << "Failed to get Lidar Data" << endl;
if(!c++)
cout << "Time consuming " << getms() - t <<
" from initialization to parsing to point cloud data" << endl;
}
laser.turnOff();
laser.disconnecting();
return 0;
}
void inputKey(Mat& dotMat, int& radius, int& circle_proportion, int& View_Angle, float& cos_theta,
float& cos_theta_rad, float& hypotenuse, int& height, int Viewer_Y){
Mat backupMat = dotMat.clone();
putText(dotMat, "1. Circle size", Point(10, 900), FONT_HERSHEY_SIMPLEX, 0.8, Scalar(200, 200, 200), true);
putText(dotMat, "2. View angle", Point(10, 930), FONT_HERSHEY_SIMPLEX, 0.8, Scalar(200, 200, 200), true);
imshow("dotMat", dotMat);
int key = waitKey(0);
if(key == 49){
putText(backupMat, "Circle size(1 ~ 5, Typical size 3)", Point(10, 900),
FONT_HERSHEY_SIMPLEX, 0.8, Scalar(200, 200, 200), true);
imshow("dotMat", backupMat);
radius = waitKey(0) - 48;
if(radius == 1) circle_proportion = 14;
else if(radius == 2) circle_proportion = 40;
else if(radius == 3) circle_proportion = 70;
else if(radius == 4) circle_proportion = 100;
else circle_proportion = 200;
}
else if(key == 50){
putText(backupMat, "View angle(10' ~ 80', Typical angle 45')", Point(10, 900),
FONT_HERSHEY_SIMPLEX, 0.8, Scalar(200, 200, 200), true);
imshow("dotMat", backupMat);
string putKey = to_string(waitKey(0) - 48);
putText(backupMat, putKey, Point(10, 930),
FONT_HERSHEY_SIMPLEX, 0.8, Scalar(200, 200, 200), true);
imshow("dotMat", backupMat);
string putKey2 = to_string(waitKey(0) - 48);
putText(backupMat, putKey2, Point(25, 930),
FONT_HERSHEY_SIMPLEX, 0.8, Scalar(200, 200, 200), true);
imshow("dotMat", backupMat);
waitKey(500);
View_Angle = 180 - stoi(putKey + putKey2);
cos_theta = View_Angle - 90.0;
cos_theta_rad = cos_theta * M_PI / 180.0;
hypotenuse = (Viewer_Y / 2) / cos(cos_theta_rad);
height = hypotenuse * sin(cos_theta_rad);
}
}
void putAngleSizeDistance(Mat& dotMat, float targetAngle, int targetSize, float targetDistance, Rect targetRect){
string angle_text = "Angle : " + to_string(targetAngle);
string size_text = "Size : " + to_string(targetSize);
string distance_text = "Distance : " + to_string(targetDistance) + "m";
Point target_center = find_target_center(targetRect);
putText(dotMat, angle_text, Point(target_center +
Point(targetRect.width, targetRect.height * -1 - 40)),
FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 255), true);
putText(dotMat, size_text, Point(target_center +
Point(targetRect.width, targetRect.height * -1 - 20)),
FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 255), true);
putText(dotMat, distance_text, Point(target_center +
Point(targetRect.width, targetRect.height * -1)),
FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 255), true);
}
float find_angle(Point target_point, Point sight_center){
float compute_angle = 0.0;
if(target_point.x != sight_center.x){
Point dis_pt = target_point - sight_center;
float slide_dis = sqrt(pow(dis_pt.x, 2) + pow(dis_pt.y, 2));
compute_angle = abs(dis_pt.y) / slide_dis;
}
else return 0.00;
if(target_point.x > sight_center.x) return acos(compute_angle) * (180.0 / M_PI);
else return acos(compute_angle) * -(180.0 / M_PI);
}
float find_distance(Point target_point, Point sight_center){
Point dis_pt = target_point - sight_center;
float slide_dis = sqrt(pow(dis_pt.x, 2) + pow(dis_pt.y, 2));
return slide_dis;
}
int trkTarget(const vector<Rect>& boundingBoxs, Point ptTarget){
//Index 0 is Sight_Circle so start index is Index 1
int idxTarget = 1;
float mostTargetDis = find_distance(find_target_center(boundingBoxs[idxTarget]), ptTarget);
for(size_t i = 2; i < boundingBoxs.size(); i++){
float compareTargetDis = find_distance(find_target_center(boundingBoxs[i]), ptTarget);
if(compareTargetDis < mostTargetDis){
idxTarget = i;
mostTargetDis = compareTargetDis;
}
}
return idxTarget;
}
int setTarget(const vector<Rect>& boundingBoxs, Point sight_center){
//Index 0 is Sight_Circle so start index is Index 1
int idxTarget = 1;
float mostTargetDis = find_distance(find_target_center(boundingBoxs[idxTarget]), sight_center);
for(size_t i = 2; i < boundingBoxs.size(); i++){
float compareTargetDis = find_distance(find_target_center(boundingBoxs[i]), sight_center);
if(compareTargetDis < mostTargetDis){
idxTarget = i;
mostTargetDis = compareTargetDis;
}
}
return idxTarget;
}
Point find_target_center(Rect target){
return Point(target.x + target.width / 2, target.y + target.height);
}
vector<Rect> find_object(Mat& dotMat){
Mat bin_dotMat;
cvtColor(dotMat, bin_dotMat, COLOR_BGR2GRAY);
threshold(bin_dotMat, bin_dotMat, 1, 255, THRESH_BINARY);
vector<vector<Point>> contours;
vector<Vec4i> hierarchy;
findContours(bin_dotMat, contours, hierarchy, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);
vector<Rect> boundingBoxs;
for (size_t i = 0; i < contours.size(); ++i)
boundingBoxs.push_back(boundingRect(contours[i]));
return boundingBoxs;
}
void dotting(Mat& dotMat, int x, int y, int proportion_dis, int circle_radius){
if(proportion_dis >= 500)
circle(dotMat, Point(x, y), circle_radius + 4, Scalar(139, 0, 0), -1);
else if(proportion_dis >= 400)
circle(dotMat, Point(x, y), circle_radius + 3, Scalar(0, 200, 0), -1);
else if(proportion_dis >= 300)
circle(dotMat, Point(x, y), circle_radius + 2, Scalar(0, 255, 255), -1);
else if(proportion_dis >= 200)
circle(dotMat, Point(x, y), circle_radius + 1, Scalar(0, 165, 255), -1);
else
circle(dotMat, Point(x, y), circle_radius, Scalar(0, 0, 255), -1);
}
void draw_sight_center(Mat& draw_mat, Point sight_center){
circle(draw_mat, sight_center, 6, Scalar(0, 255, 0), -1);
}
void draw_line(Mat& dotMat, Point sight_center, int Viewer_X, int Viewer_Y, int height){
line(dotMat, sight_center, Point(Viewer_Y, Viewer_X - height), Scalar(0, 0, 255), 3);
line(dotMat, sight_center, Point(0, Viewer_X - height), Scalar(0, 0, 255), 3);
}
int ydlidarSet(){
string port;
os_init();
map<string, string> ports = lidarPortList();
map<string, string>::iterator it;
if(ports.size() == 1) port = ports.begin()->second;
else{
int id = 0;
for (it = ports.begin(); it != ports.end(); it++)
{
printf("[%d] %s %s\n", id, it->first.c_str(), it->second.c_str());
id++;
}
if(ports.empty()){
cout << "Not Lidar was detected. Please enter the lidar serial port : ";
cin >> port;
}
else{
while(os_isOk()){
cout << "Please select the lidar port : ";
string number;
cin >> number;
if ((size_t)atoi(number.c_str()) >= ports.size())
continue;
it = ports.begin();
id = atoi(number.c_str());
while (id)
{
id--;
it++;
}
port = it->second;
break;
}
}
}
int baudrate = 230400;
cout << "Baudrate : " << baudrate << endl;
bool isSingleChannel = false;
cout << "One-way communication : " << isSingleChannel << endl;
float frequency = 10.0;
cout << "Frequency : " << frequency << "Hz" << endl;
if(!os_isOk()) return -1;
int optval = TYPE_TRIANGLE;
string ignore_array;
ignore_array.clear();
laser.setlidaropt(LidarPropSerialPort, port.c_str(), port.size());
laser.setlidaropt(LidarPropIgnoreArray, ignore_array.c_str(), ignore_array.size());
laser.setlidaropt(LidarPropSerialBaudrate, &baudrate, sizeof(int));
laser.setlidaropt(LidarPropLidarType, &optval, sizeof(int));
optval = YDLIDAR_TYPE_SERIAL;
laser.setlidaropt(LidarPropDeviceType, &optval, sizeof(int));
optval = 5;
laser.setlidaropt(LidarPropSampleRate, &optval, sizeof(int));
optval = 4;
laser.setlidaropt(LidarPropAbnormalCheckCount, &optval, sizeof(int));
optval = 10;
laser.setlidaropt(LidarPropIntenstiyBit, &optval, sizeof(int));
bool b_optvalue = false;
laser.setlidaropt(LidarPropFixedResolution, &b_optvalue, sizeof(bool));
b_optvalue = false;
laser.setlidaropt(LidarPropReversion, &b_optvalue, sizeof(bool));
b_optvalue = false;
laser.setlidaropt(LidarPropInverted, &b_optvalue, sizeof(bool));
b_optvalue = true;
laser.setlidaropt(LidarPropAutoReconnect, &b_optvalue, sizeof(bool));
laser.setlidaropt(LidarPropSingleChannel, &isSingleChannel, sizeof(bool));
b_optvalue = false;
laser.setlidaropt(LidarPropIntenstiy, &b_optvalue, sizeof(bool));
b_optvalue = true;
laser.setlidaropt(LidarPropSupportMotorDtrCtrl, &b_optvalue, sizeof(bool));
b_optvalue = false;
laser.setlidaropt(LidarPropSupportHeartBeat, &b_optvalue, sizeof(bool));
/// unit: °
float f_optvalue = 180.0f;
laser.setlidaropt(LidarPropMaxAngle, &f_optvalue, sizeof(float));
f_optvalue = -180.0f;
laser.setlidaropt(LidarPropMinAngle, &f_optvalue, sizeof(float));
/// unit: m
f_optvalue = 64.f;
laser.setlidaropt(LidarPropMaxRange, &f_optvalue, sizeof(float));
f_optvalue = 0.05f;
laser.setlidaropt(LidarPropMinRange, &f_optvalue, sizeof(float));
/// unit: Hz
laser.setlidaropt(LidarPropScanFrequency, &frequency, sizeof(float));
laser.enableGlassNoise(false);
laser.enableSunNoise(false);
laser.setBottomPriority(true);
bool ret = laser.initialize();
if(!ret){
cerr << "Fail to initalize " << laser.DescribeError() << endl;
return -1;
}
ret = laser.turnOn();
if(!ret){
cerr << "Fail to start "<< laser.DescribeError() << endl;
return -1;
}
if(ret && os_isOk()){
string userVersion;
if(laser.getUserVersion(userVersion))
cout << "User Version : " << userVersion.c_str() << endl;
}
if(ret){
device_info di;
memset(&di, 0, DEVICEINFOSIZE);
if(laser.getDeviceInfo(di, EPT_Module)) core::common::printfDeviceInfo(di, EPT_Module);
else cout << "Fail to get module device info" << endl;
if(laser.getDeviceInfo(di, EPT_Base)) core::common::printfDeviceInfo(di, EPT_Base);
else cout << "Fail to get baseplate device info" << endl;
}
return 1;
}
'CELLON Kart(Tracking)' 카테고리의 다른 글
How much Raspberry Pi can be used with YDLidar G2 on Samsung batteries(20000mAh) (0) | 2024.04.03 |
---|---|
Vision_Kart 2.3v (0) | 2024.04.02 |
Vision_Kart 2.1v (0) | 2024.03.28 |
Vision_Kart 2.xv MasterPlan (0) | 2024.03.28 |
Vision_Kart 2.0v (0) | 2024.03.27 |